Soliton interaction as a possible model for extreme waves in shallow water

نویسندگان

  • P. Peterson
  • T. Soomere
  • E. van Groesen
چکیده

Interaction of two long-crested shallow water waves is analysed in the framework of the two-soliton solution of the Kadomtsev-Petviashvili equation. The wave system is decomposed into the incoming waves and the interaction soliton that represents the particularly high wave hump in the crossing area of the waves. Shown is that extreme surface elevations up to four times exceeding the amplitude of the incoming waves typically cover a very small area but in the near-resonance case they may have considerable extension. An application of the proposed mechanism to fast ferries wash is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Deterministic Generation of Extreme Surface Water Waves Based on Soliton on Finite Background in Laboratory

This paper aims to describe a deterministic generation of extreme waves in a typical towing tank. Such a generation involves an input signal to be provided at the wave maker in such a way that at a certain position in the wave tank, say at a position of a tested object, a large amplitude wave emerges. For the purpose, we consider a model called a spatial-NLS describing the spatial propagation o...

متن کامل

Soliton interactions of the Kadomtsev-Petviashvili equation and generation of large-amplitude water waves

We study the maximum wave amplitude produced by line-soliton interactions of the Kadomtsev-Petviashvili II (KPII) equation, and we discuss a mechanism of generation of large amplitude shallow water waves by multi-soliton interactions of KPII. We also describe a method to predict the possible maximum wave amplitude from asymptotic data. Finally, we report on numerical simulations of multi-solito...

متن کامل

Interaction of shallow-water solitons as a possible model for freak waves

Nonlinear interactions of solitonic waves in the framework of the KadomtsevPetviashvili equation may result in particularly high wave humps resembling the phenomena occurring during the Mach reflection of solitary waves. For the limiting case of interactions of perfect solitons the extreme heights, slopes and many other properties of these humps can be estimated analytically. Surface elevation ...

متن کامل

Topological soliton solutions of the some nonlinear partial differential equations

In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...

متن کامل

Variational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves

The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-inverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003